5,027 research outputs found

    Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink

    Get PDF
    The ability to print and pattern all the components that make up a tissue (cells and matrix materials) in three dimensions to generate structures similar to tissues is an exciting prospect of bioprinting. However, the majority of the matrix materials used so far for bioprinting cannot represent the complexity of natural extracellular matrix (ECM) and thus are unable to reconstitute the intrinsic cellular morphologies and functions. Here, we develop a method for the bioprinting of cell-laden constructs with novel decellularized extracellular matrix (dECM) bioink capable of providing an optimized microenvironment conducive to the growth of three-dimensional structured tissue. We show the versatility and flexibility of the developed bioprinting process using tissue-specific dECM bioinks, including adipose, cartilage and heart tissues, capable of providing crucial cues for cells engraftment, survival and long-term function. We achieve high cell viability and functionality of the printed dECM structures using our bioprinting method.open11349353sciescopu

    Crystallization Characteristics of CaO-Al2O3-Based Mold Flux and Their Effects on In-Mold Performance during High-Aluminum TRIP Steels Continuous Casting

    Get PDF
    Crystallization behaviors of the newly developed lime-alumina-based mold fluxes for high-aluminum transformation induced plasticity (TRIP) steels casting were experimentally studied, and compared with those of lime-silica-based mold fluxes. The effects of mold flux crystallization characteristics on heat transfer and lubrication performance in casting high-Al TRIP steels were also evaluated. The results show that the crystallization temperatures of lime-alumina-based mold fluxes are much lower than those of lime-silica-based mold fluxes. Increasing B2O3 addition suppresses the crystallization of lime-alumina-based mold fluxes, while Na2O exhibits an opposite effect. In continuous cooling of lime-alumina-based mold fluxes with high B2O3 contents and a CaO/Al2O3 ratio of 3.3, faceted cuspidine precipitates first, followed by needle-like CaO center dot B2O3 or 9CaO center dot 3B(2)O(3)center dot CaF2. In lime-alumina-based mold flux with low B2O3 content (5.4 mass pct) and a CaO/Al2O3 ratio of 1.2, the formation of fine CaF2 takes place first, followed by blocky interconnected CaO center dot 2Al(2)O(3) as the dominant crystalline phase, and rod-like 2CaO center dot B2O3 precipitates at lower temperature during continuous cooling of the mold flux. In B2O3-free mold flux, blocky interconnected 3CaO center dot Al2O3 precipitates after CaF2 and 3CaO center dot 2SiO(2) formation, and takes up almost the whole crystalline fraction. The casting trials show that the mold heat transfer rate significantly decreases near the meniscus during the continuous casting using lime-alumina-mold fluxes with higher crystallinity, which brings a great reduction of surface depressions on cast slabs. However, excessive crystallinity of mold flux causes poor lubrication between mold and solidifying steel shell, which induces various defects such as drag marks on cast slab. Among the studied mold fluxes, lime-alumina-based mold fluxes with higher B2O3 contents and a CaO/Al2O3 ratio of 3.3 show comparatively improved performance.open113133sciescopu

    A Reaction Between High Mn-High Al Steel and CaO-SiO2-Type Molten Mold Flux: Part I. Composition Evolution in Molten Mold Flux

    Get PDF
    In order to elucidate the reaction mechanism between high Mn-high Al steel such as twin-induced plasticity steel and molten mold flux composed mainly of CaO-SiO2 during continuous casting process, a series of laboratory-scale experiments were carried out in the present study. Molten steel and molten flux were brought to react in a refractory crucible in a temperature range between 1713 K to 1823 K (1440 A degrees C to 1550 A degrees C) and composition evolution in the steel and the flux was analyzed using inductively coupled plasma atomic emission spectroscopy, X-ray fluorescence, and electron probe microanalysis. The amount of SiO2 in the flux was significantly reduced by Al in the steelthus, Al2O3 was accumulated in the flux as a result of a chemical reaction, 4[Al] + 3(SiO2) = 3[Si] + 2(Al2O3). In order to find a major factor which governs the reaction, a number of factors ((pct CaO/pct SiO2), (pct Al2O3), [pct Al], [pct Si], and temperature) were varied in the experiments. It was found that the above chemical reaction was mostly governed by [pct Al] in the molten steel. Temperature had a mild effect on the reaction. On the other hand, (pct CaO/pct SiO2), (pct Al2O3), and [pct Si] did not show any noticeable effect on the reaction. Apart from the above reaction, the following reactions are also thought to happen simultaneously: 2[Mn] + (SiO2) = [Si] + 2(MnO) and 2[Fe] + (SiO2) = [Si] + 2(FeO). These oxide components were subsequently reduced by Al in the molten steel. Na2O in the molten flux was gradually decreased and the decrease was accelerated by increasing [pct Al] and temperature. Possible reactions affecting the Al2O3 accumulation are summarized.ope

    Crystallization Kinetics and Mechanism of CaO-Al2O3-Based Mold Flux for Casting High-Aluminum TRIP Steels

    Get PDF
    Non-isothermal crystallization of the newly developed lime-alumina-based mold fluxes was investigated using differential scanning calorimetry. The crystallization kinetic parameters were determined by Ozawa equation, the combined Avrami-Ozawa equation, and the differential iso-conversional method of Friedman. It was found that Ozawa method failed to describe the non-isothermal crystallization behavior of the mold fluxes. The Avrami exponent determined by the combined Avrami-Ozawa equation indicates that the crystallization of cuspidine occurs through bulk nucleation and reaction-controlled three-dimensional growth, and then transforms to reaction-controlled two-dimensional growth at the crystallization later stage in lime-alumina-based mold fluxes with higher B2O3 content. For the mold fluxes with lower B2O3 content (10.8 mass pct), the crystallization of cuspidine is bulk nucleation and reaction-controlled two-dimensional growth at the crystallization primary stage followed by a diffusion-controlled two-dimensional growth process. The crystallization of CaF2 in mold flux originates from bulk nucleation and diffusion-controlled three-dimensional growth, which then transforms to two-dimensional growth. FE-SEM observations support these kinetic analysis results. The effective activation energy for cuspidine crystallization in the mold flux with higher B2O3 and Na2O contents increases as the crystallization progresses, and then decreases at the relative degree of crystallinity greater than 60 pct. The transition point of this trend approximately corresponds to the relative degree of crystallinity at which the crystallization mode of cuspidine transforms. For the mold fluxes with lower B2O3 and Na2O contents, the effective activation energy for cuspidine formation varies monotonically with the increase in the relative degree of crystallinity.open11149sciescopu

    Evaluation of Matusita Equation and Its Modified Expression for Determining Activation Energy Associated with Melt Crystallization

    Get PDF
    Both the Matusita equation and the modified Matusita equation for estimating the activation energy associated with non-isothermal crystallization were critically evaluated. The derivation for melts crystallization on cooling indicates that, unlike for the crystallization that occurs on heating, the term 1 - exp (-Delta G/RT) in the basic rate equation of crystal growth and the term depending on the initial temperature of the cooling process cannot be neglected. It is demonstrated that both the Matusita equation and its modified expression are only valid to estimate the activation energy associated with the crystallization that occurs on heating, but are inapplicable for the melt crystallization that occurs on cooling. It is suggested that the isoconversional methods of Friedman and Vyazovkin should be alternative to determine effective activation energy for melt crystallization that occurs on cooling.open1133sciescopu

    Computer-aided multiple-head 3D printing system for printing of heterogeneous organ/tissue constructs

    Get PDF
    Recently, much attention has focused on replacement or/and enhancement of biological tissues via the use of cell-laden hydrogel scaffolds with an architecture that mimics the tissue matrix, and with the desired three-dimensional (3D) external geometry. However, mimicking the heterogeneous tissues that most organs and tissues are formed of is challenging. Although multiple-head 3D printing systems have been proposed for fabricating heterogeneous cell-laden hydrogel scaffolds, to date only the simple exterior form has been realized. Here we describe a computer-aided design and manufacturing (CAD/CAM) system for this application. We aim to develop an algorithm to enable easy, intuitive design and fabrication of a heterogeneous cell-laden hydrogel scaffolds with a free-form 3D geometry. The printing paths of the scaffold are automatically generated from the 3D CAD model, and the scaffold is then printed by dispensing four materials; i.e., a frame, two kinds of cell-laden hydrogel and a support. We demonstrated printing of heterogeneous tissue models formed of hydrogel scaffolds using this approach, including the outer ear, kidney and tooth tissue. These results indicate that this approach is particularly promising for tissue engineering and 3D printing applications to regenerate heterogeneous organs and tissues with tailored geometries to treat specific defects or injuries.open112321sciescopu

    A Novel Technology to Develop a Nickel-Enriched Layer on Slab Surface by Utilizing NiO-Containing Synthetic Powder

    Get PDF
    Cu, as one of the typical tramp elements, is known to cause hot shortness during reheating of slabs followed by hot rolling of sheet products. In order to prevent such harmful aspects, a new idea is proposed by using synthetic powders containing NiO in the mold flux during continuous casting of the slab. During the casting, NiO is reduced and absorbed on initial solidified steel shell, and a Ni-rich layer is developed near the surface region of the slab. According to the proposed idea, it is expected that both the Cu solubility and the melting temperature of Cu-segregated region would increase considerably by virtue of Ni-rich layer, which is believed to play an important role to prevent the Cu hot shortness. A series of laboratory-scale experiments were carried out in order to confirm the reduction and the absorption of Ni into the steel matrix. It was observed by SEM-EDS and FE-EPMA that a Ni-enriched layer, as thick as a few hundred mu m, formed near the surface of the slab. Also, a number of laboratory-scale heat treatment tests under oxidizing atmosphere showed that the samples with the Ni-enriched layer had a decreased Cu enrichment at the interface between scale and steel, compared to a case without Ni-rich layer. A pilot-plant-scale steel slab (medium carbon steel containing 0.3 wt pct Cu) was obtained in a continuous casting process with the NiO-containing mold flux, and a Ni-enriched layer was also observed. It was concluded that the use of NiO in the mold flux is a promising new approach for suppressing the hot shortness of Cu-containing steel, without an expensive addition of Ni to the whole steel matrix.open110Nsciescopu

    Fabrications and structural characterization of ultra-fine carbon fibres by electrospinning of polymer blends

    Get PDF
    ArticleSOLID STATE COMMUNICATIONS. 142(1-2): 20-23 (2007)journal articl

    Reading Single DNA with DNA Polymerase Followed by Atomic Force Microscopy

    Get PDF
    The importance of DNA sequencing in the life sciences and personalized medicine is continually increasing. Single-molecule sequencing methods have been developed to analyze DNA directly without the need for amplification. Here, we present a new approach to sequencing single DNA molecules using atomic force microscopy (AFM). In our approach, four surface conjugated nucleotides were examined sequentially with a DNA polymerase immobilized AFM tip. By observing the specific rupture events upon examination of a matching nucleotide, we could determine the template base bound in the polymerase's active site. The subsequent incorporation of the complementary base in solution enabled the next base to be read. Additionally, we observed that the DNA polymerase could incorporate the surface-conjugated dGTP when the applied force was controlled by employing the force-clamp mode.X1114Ysciescopu
    corecore